
An Inverse Reinforcement Learning Approach to Generative Music

By
Sam Lowe

Senior Honors Thesis
Computer Science

University of North Carolina at Chapel Hill

April 9, 2020

Approved:

Dr. Ming Lin, Thesis Advisor

Dr. Dinesh Manocha, Reader

Dr. Don Porter, Reader



ii

ABSTRACT

In this work, we explore the applicability of reinforcement learning (RL) techniques to

generative music, with a particular focus on interactive musical agents. Despite the

popularity of both generative music and reinforcement learning as topics of study,

only a limited amount of research has explored their intersection, which we posit

is partially due to the difficulty of specifying a reward function to describe musical

behavior. However, recent advances in inverse reinforcement learning have resulted

in algorithms that can train agents based on expert data in absence of a reward

function. Building off these successes, we present Melodic Imitator, a system that

learns to generate melodies using inverse reinforcement learning. We utilize an inverse

RL algorithm, generative adversarial imitation learning (GAIL), which trains a pair

of neural networks to generate trajectories that match the occupancy measures of

the expert data set with only a few training examples. The sample efficiency of

this approach means that it can potentially be used to create improvisational music

companions, agents that learn to imitate the particular style of a musician, something

that has been a research ideal since the early 2000s. We present several experiments

in which we vary our data representations in order to compare the musical richness of

the content generated in response. Finally, we describe a live demonstration system

that adapts our system to a live musical context.



iii

ACKNOWLEDGEMENTS

I must begin by expressing my deep gratitude to Professor Lin for all of her help

and support over the past four years and especially for serving as the advisor to

this project. I also want to acknowledge Professor Manocha and Professor Porter

for serving as my second and third readers. Finally, I would like to thank Professor

Chelsea Finn at Stanford University for her guidance on the algorithms which might

hold the most promise for my applications. I hope these results speak to the great

generosity of all the aforementioned.



iv

TABLE OF CONTENTS

LIST OF FIGURES vi

CHAPTER 1: INTRODUCTION 1

1.1. Motivation 1

1.1.1. Interactive Musical Agents 1

1.2. Literature Review 2

1.2.1. Generative Music 2

1.2.2. Interactive Musical Agents 2

1.2.3. Reinforcement Learning 4

1.2.4. Generative Adversarial Imitation Learning 7

1.3. Expected Contributions 8

CHAPTER 2: MELODIC IMITATOR 9

2.1. Agent Construction 9

2.2. Data 10

2.3. Environment 10

2.4. Experiments 11

2.4.1. Data Representation 11

2.4.2. Additional Musical Information 13

2.5. Results 14

2.6. Discussion 16

2.7. Live Demo System 17



v

CHAPTER 3: CONCLUSION 19

3.1. Summary of Main Results 19

3.2. Limitations 19

3.3. Future Work 20

REFERENCES 21



vi

LIST OF FIGURES

FIGURE 1.1: A pictorial example of a Markov decision process. 5

FIGURE 2.1: Ableton Live environment 10

FIGURE 2.2: A visualization of the conversion from MIDI data to a vector
representation.

12

FIGURE 2.3: One measure of the drum pattern used for our final exper-
iment.

14

FIGURE 2.4: One of our composed rhythm parts and one sample melody
for each of our data representation experiments in the order described
above.

15

FIGURE 2.5: The same rhythm part and one sample melody from the
agent trained with the addition of drum information.

16

FIGURE 2.6: The two phase interaction flow for the live demo. 18



CHAPTER 1: INTRODUCTION

The application of artificial intelligence algorithms for the purpose of generating

novel musical content has been the subject of ongoing research since as early as 1957,

when Hiller and Isaacson created the first completely AI-generated score [1]. Their

work, and the work of many musical AI researchers since, represents one particular

direction for a much broader interest in the AI community of exploring the ability of

artificial intelligences to behave creatively. Given that creativity is a central compo-

nent in human intelligence, it seems logical that a truly intelligent artificial system

will also be able to exhibit creative behavior, meaning research into machine creativity

is of importance to the entire field of AI [2].

1.1 Motivation

Since developments in generative music carry such great consequence for AI efforts

in general, it is perhaps surprising that the branch of reinforcement learning has re-

ceived so little attention across these works. Recent successes in inverse reinforcement

learning, in particular, provide strong indications of the potential of such approaches

for applications to generative music; these methods are highly sample-efficient and

alleviate some of the difficulties facing previous researchers investigating the inter-

section of reinforcement learning and music, namely the specification of a reward

function. The potential of this unexplored avenue is the main motivator for our work

and experiments on the applicability of such approaches.

1.1.1 Interactive Musical Agents

Many recent advances in reinforcement learning have given particular focus to the

development of systems that can operate in real-time environments. The overlap of



2

deep learning and reinforcement learning has been especially fruitful in this endeavor,

as many deep models are capable of performing real-time calculations once trained.

This points to a potential expansion of efforts to use reinforcement learning for gener-

ative music into the area of interactive musical agents, live performance-based systems

that process and generate musical content in real-time. Investigating the feasibility

of building such a system with reinforcement learning methods was a core goal of our

research.

1.2 Literature Review

We now discuss previous work in the research areas of consequence to our research.

1.2.1 Generative Music

In the time since Hiller and Isaacson unveiled the music of their rule-based sys-

tem, many projects have sought similar goals and have employed a wide variety of

techniques, including symbolic systems, Markov chains, evolutionary processes, and

grammars [3]. In recent years, success has been reported with a variety of deep learn-

ing techniques, particularly with recurrent neural networks (RNNs) given their ability

to handle data with temporal, recurrent structure, something that is highly present

in music [4]. This research has proceeded to the point where there are now many

high profile projects related to the field, and the technology has found it’s way into

the public sphere, like with Google’s Bach Doodle [5].

1.2.2 Interactive Musical Agents

Across the literature, interactive musical agents are typically characterized by an

input system that processes either symbolic or physical representation of the source

music, an agent that takes that input and generates musically salient parameters

in real-time, and an output system that takes the agent’s response to play notes

or control some parameter of the audio. Similarly to the broader research efforts in

generative music, these systems have employed a wide variety of approaches. Further-



3

more in the case of interactive musical agents, these systems are often idiosyncratic

in their adaptations to a particular researcher or performer.

One hallmark example of this highly-customized approach is George Lewis’s Voy-

ager system. Lewis is a trombonist, and he designed Voyager to track his improvi-

sation through pitch-to-MIDI conversion and generate responses [6]. Voyager is an

exceedingly intricate, state-based system that has been expanded year after year to

create unanticipated musical content for the purpose of expanding Lewis’s improvi-

sational vocabulary. It has been designed solely with his performance style in mind,

and therefore closely reflects the attitude and approach of its creator. Lewis’s intent

was to create a non-hierarchical system, and the various statistics and input fields

utilized by Voyager in its abstract mappings are a direct result of this intent.

As with studies on generative music in general, some improvisational music com-

panions have built on the recent successes of deep learning and again have found

recurrent neural networks of particular use. In his work for Google Brain, Castro

built an structured improvisational system that relies on recurrent neural networks

for melody generation [7]. After pre-training an LSTM model, Castro utilizes the

trained network in a highly-structured system that allows for the layering of drums,

bass, and chords before finally entering into a call-and-response type improvisation

where the user plays notes that are stored in a buffer and then inputted into the

network as a primer melody to generate a "response". The system utilizes this re-

sponse in a hybrid manner, as the network is used only for melodic content and its

rhythmic output is discarded. Instead, the notes are sounded when the user presses

a key, meaning that the timing is determined by the performer.

1.2.2.1 Improvisational Music Companions

One research goal in the field of interactive musical agents that can be found in

the literature dating back to at least the early 2000s is the construction of a true

improvisational music companion (IMC) that can adapt to the style of a particular



4

performer. In her paper on the Band-Out-of-a-Box system, Thom describes this goal

as trying to build a system that "plays music with you, trades licks and riffs with

you, improvises with you [and] ... gets to know you and your musical personality" [8].

Band-Out-of-a-Box attempts to achieve this ideal through the use of unsupervised

machine learning algorithms that learns to model a musician’s behavior by separat-

ing their improvisations into user-specific playing modes and then detecting playing

modes and generating representative content in real-time scenarios.

The goal of IMCs represents a shortcoming of modern deep learning approaches to

interactive musical agents, as the large corpus required for the proper training of a

deep model means that the musical examples must be mined from large, multi-artist,

multi-genre data sets. Castro argues to the contrary in his work, viewing the primer

melodies as a reflection of individual style, but given that the melody network is

trained on thousands of MIDI examples and uses what it learns during training to

transform the primer melodies into a response, we contend that the system still falls

short of the goal of IMCs [7].

1.2.3 Reinforcement Learning

The core goal of reinforcement learning research is the design of algorithms that

train an agent to maximize a reward that it receives for correct behavior in an envi-

ronment [9]. RL is oriented around Markov decision processes (MDPs), Figure 1.1,

in which an agent performs an action based on the state of an environment and then

observes a new state and, potentially, a reward in a continual loop.



5

Figure 1.1: A pictorial example of a Markov decision process.

A complete Markov decision process is specified by a set of states S, a set of

actions A, a transition function P that specifies a distribution over next states given

a state-action pair, a reward function R, a starting state s0, a discount factor γ that

specifies the relative importance of future rewards, and a horizon H that specifies the

maximum length of an episode. The goal of reinforcement learning is then defined

as finding the optimal control policy in the MDP. The methods used to solve or

approximate this control problem vary, and include policy iteration, the iteration of

value and Q functions that specify expected reward given a policy, policy gradients,

and model-free methods.

1.2.3.1 Reinforcement Learning for Generative Music

The use of reinforcement learning for generative music has been limited, but it is

not entirely unexplored. Jaques iterated on previous successes in using RNNs for the

generation of melodies by tuning the output of network with a RL reward function

[4]. The reward function specifies certain composition rules, like avoiding excessively

repeated notes, and is combined with the original RNN network to maintain the

information about transitions learned by the network while also adhering to the music

theoretic constraints.

In another example of the limited forays into RL for music, Collins proposes training

musical agents using reinforcement learning based on rewards related to either the



6

predictive power of the agent or the degree of influence over the musical state exerted

by the agent’s actions [10]. One of the problems raised in this work, and that seems

to be present in much of the research at the intersection of RL and music, is the

difficulty in finding a proper reward specification for musical behavior. Encoding

all of the knowledge that a musician possesses about music into a mathematically-

specified reward is highly challenging, and perhaps impossible, and we posit that this

challenge is one of the core factors leading to the lack of research in this area.

1.2.3.2 Inverse Reinforcement Learning

Fortunately, there has been much attention given in the reinforcement learning

community in recent years on strategies for training agents in the absence of a reward

function. These algorithms are collectively termed inverse reinforcement learning.

Instead of training an agent to act optimally in an environment given a reward func-

tion, inverse RL recovers a reward function based on expert demonstrations in the

environment, or in certain cases, optimizes a policy directly based on those demon-

strations [11]. One challenge for early work in inverse reinforcement learning was the

existence of degenerate solutions in the space of reward functions for which the ex-

pert trajectories are optimal. The canonical solution to this problem is the maximum

entropy inverse RL algorithm, which employs the principle of maximum entropy to

select among the candidate functions [12].

Since the publication of the MaxEnt RL algorithm, a variety of inverse RL ap-

proaches have found success on many simulated and real-world problems. These

algorithms vary in the portions of the MDP problem that must be specified, but

generally have the advantage of being highly sample efficient when compared to clas-

sical RL approaches. For example, some inverse RL algorithms require access to the

underlying transition model for an MDP, while for others it is not needed.



7

1.2.4 Generative Adversarial Imitation Learning

One algorithm that appears to hold great promise for applications to musical do-

mains given its ability to handle unknown dynamics, something that would be hard

to specify for musical settings, and high sample efficiency is Generative Adversarial

Imitation Learning (GAIL) [13]. GAIL recovers a policy directly from the expert data

by finding an approximate solution to a cost-regularized version of MaxEnt RL, which

induces a policy that approaches the state-action occupancy measures of the expert

data. Their particular choice of cost regularizer minimizes the Jensen-Shannon diver-

gence of the occupancy measures. This measure of divergence utilizes a discriminator

function to calculate its value, and so GAIL actually relies on two networks over the

course of training. Given expert trajectories τE sampled from an expert policy πE, a

discriminator network D with parameters ω0, and a policy network with parameters

θ0, GAIL proceeds as follows:

• for i = 0, 1, 2... do:

• Sample trajectories τi from πθi

• Update ωi to ωi+1 using gradient:

Eτi [∆ωlog(Dω(s, a))] + EτE [∆ωlog(1−Dω(s, a))]

• Take a policy step from θi to θi+1, using the trust region policy optimiza-

tion rule with cost function log(Dwi+1
(s, a)). This is a KL-constrained natural

gradient step:

Eτi [∆θlogπθ(s, a)Q(s, a)]− λ∆θH(πθ)

where

Q(s̄, ā) = Eτi [log(Dω+1(s, a))|s0 = s̄, a0 = ā]



8

We refer you to their paper for the full derivation of the algorithm and the proofs

of its optimality.

1.2.4.1 Connection to GANs

This conception of inverse reinforcement learning draws parallels to Generative

Adversarial Networks (GANs), which train a generator network to generate data that

matches the distribution of its training set by attempting to fool a discriminator

network that tries to distinguish between the two data sets. In the case of GAIL, the

occupancy measure of the policy network is comparable to the data generated by the

generator network, and the occupancy measure of the expert is akin to the true data

distribution.

1.3 Expected Contributions

In this rest of this paper, we present Melodic Imitator, a generative music system

designed around the generative adversarial imitation learning algorithm. We analyze

the results of several experiments on potential design choices, including varying the

representation of our observation space and the amount of musical information avail-

able to the agent. We also describe an interactive musical agent built with theMelodic

Imitator system to exemplify its potential for use in live performance environments.



CHAPTER 2: MELODIC IMITATOR

The remainder of this work is devoted to the development of a new system called

Melodic Imitator, which utilizes the GAIL algorithm to train an agent to generate

melodies in the style of a particular performer. Given the sample efficiency of the

GAIL algorithm, we can train an agent to operate in a high-dimensional environment

with as few as 10 examples, meaning that we can personalize an agent to one individ-

ual’s melodic approach as the size of the data set needed is manageable in comparison

to an individual’s musical output. We describe the construction of the agent, the data

used, and the OpenAI gym environment we designed for this purpose. Additionally,

we detail several experiments on varying the amount of musical information available

in our data representation and analyze the results. Finally, we also include discus-

sion of a live demo application which brings the project into the world of interactive

musical agents and, hopefully, improvisational music companions.

2.1 Agent Construction

Our GAIL training setup includes two models: our policy network and the dis-

criminator. The GAIL algorithm cannot properly train recurrent neural network

structures, so both the policy and discriminator networks are multi-layer perceptrons

(MLPs). The policy network takes in 128 units in its input layer, passes it through

two hidden layers each of size 64, and then performs a softmax function to select

one of 89 possible output units, one per action. Our discriminator network takes in

transitions of size 217 (the concatenation of an observation and an action), passes it

through one hidden layer of size 100, and outputs a binary classification. We train

these networks for a total of one million steps, with a discriminator step size of 0.0003



10

(the policy network step size is determined in the TRPO calculation).

2.2 Data

To avoid the challenges associated with processing raw audio data, we built our

agent around the symbolic musical representation provided by the MIDI standard.

We composed a set of five rhythmic accompaniments and ten melodies in the key of

C in the digital audio workstation Ableton Live, depicted in Figure 2.1. We chose 16

bars as the length of each of these pieces, given its common recurrence in the lengths

of song sections in popular music.

Figure 2.1: The project file for the data set composed in Ableton Live. The rhythm
and melody tracks are visible in the top left, with five rhythm parts and ten melodies.
One melody is highlighted in the bottom section to illustrate the symbolic represen-
tation.

2.3 Environment

To increase the portability of our work and compatibility with existing reinforce-

ment learning code repositories, we designed an OpenAI gym specification for our

musical environment. Improv_Env follows the gym framework, which requires the



11

implementation of a reset and step function that start and progress an episode, respec-

tively, and the definition of an observation and action space. Our reset function loads

a new rhythm example from our data set, and the step function simply returns the

next 16th note frame, since the melody note action does not actually transition the

environment. Our observation space consists of a vector of 128 values corresponding

to each possible MIDI note, and our action space consists of 89 discrete options, one

for each key on the piano plus one option for playing no note. We also implemented

a render function that provides for easy parsing of the notes selected by our trained

agent.

2.4 Experiments

Here we present the experiments we performed with varying the representation of

our rhythmic data and adding additional structural information with the inclusion of

a drum part.

2.4.1 Data Representation

We processed the raw MIDI files composed in Ableton Live using the Mido library

for Python, and discretized at the precision of 16th notes. Given that each musical

piece is 16 bars, we have a total of 256 time steps per episode. Each time step is

represented by a vector of length 128, with one entry per MIDI note. Given that GAIL

is not compatible with recurrent neural networks, we felt it was necessary to explore

different methods for encoding our data to investigate the potential for increasing the

musicality of our agent since we could not rely on our network structure to capture

temporal relationships in the data. In total, we explored three different methods

for encoding these parts. For each potential representation we also manipulated the

frames to represent transposition into the keys of G and D, giving a total of 30

trajectories per experiment.



12

2.4.1.1 Frame-by-Frame

For our baseline encoding, we simply initialized our MIDI note vector to all zeros

and changed the value to one for each note present at the given 16th note frame. This

has the effect of providing our policy with observations of only what is occurring at the

given frame, with no additional temporal or structural information. A visualization

of this encoding process is given in Figure 2.2.

Figure 2.2: In this example, we demonstrate the conversion of our MIDI files to
our baseline vector representation, with the notes sounding at the marked frame
represented by ones in the vector and all other notes set to zero.

2.4.1.2 Accumulated Notes

Given that music is a highly temporal domain, with the notes previously played

providing strong clues about upcoming changes or recurrences in the underlying har-

monic content, we felt that it was necessary to explore potential representations that

could capture this temporal information. Our first attempt at this was to simply

increment the value for notes present at each frame to represent the accumulation of

notes over the 16 bars. We then divided the values in each trajectory by the value of

the note seen most often to normalize our observations over the range [0, 1].



13

2.4.1.3 Accumulated Notes with Decay

Representing the accumulation of notes over the frame provides the agent with

access to temporal information about the notes played up to a given frame, but it does

not provide structural information about when those notes occurred. For example, a

rhythm part that plays a G chord for 4 beats then a C chord for 4 beats will have

the same representation under our last scheme as one in which the order of those

chords is reversed. To address this issue, we extended our previous representation by

decaying the values of previous frames by a factor of 255
256

at each time step. So, if a G

chord is currently sounding after previously hearing a C and D chord, the constituent

notes of G will be at value 1, with the notes for the C chord slightly decayed and the

notes of the D chord decayed even more so. With this representation, we hoped to

address what we perceived as the main shortcomings of using an MLP-based policy

over an RNN-based one.

2.4.2 Additional Musical Information

After exploring the potential of increasing the musicality of our agent with ad-

ditional information about the harmonic progression of an episode, we wanted to

investigate possible gains from the inclusion of additional instrumental parts, in this

case, a drum rhythm. Preliminary analysis on our data representation experiments

indicated two things that were important for this experiment: (1) the agent had trou-

ble generalizing across key signatures and (2) our decayed representation did not have

a distribution that was easy to descend during training. To alleviate these concerns,

we limited our data set to only the original trajectories in the key of C and utilized

our accumulated representation as the basis on which to add our additional parts.

For this experiment, we expanded our observation vectors to length 131 to represent

3 more MIDI notes for each of a bass drum, snare, and hi-hat. For each trajectory,

we utilized a simple drum pattern of 8th note hi-hats, a bass drum on the 1st and



14

3rd beats, and a snare on the 2nd and 4th. This beat is depicted in Figure 2.3.

Figure 2.3: One measure of the drum pattern used for our final experiment.

2.5 Results

Given that generator and discriminator networks do not have easily interpretable

and objective loss functions that can be used to evaluate their efficacy, we instead

provide examples of the types of melodies generated in each experiment. Figure

2.4 depicts one of our composed rhythm parts and a sample melody for each data

representation experiment. Figure 2.5 depicts the same rhythm part with a melody

composed by the agent trained with the addition of drum beat information.



15

10



  

 

      

 

    

 

  



  











 

14

10

5

                  

            

    

   

       

       

         

   

   

    

   







 



 

















 





9

 

  

   

   

   

   

 

 



 

     

 

 



 



 















          
Figure 2.4: One of our composed rhythm parts and one sample melody for each of
our data representation experiments in the order described above.



16

12

15

9

6







 



 


 










 




















 

     

  

  

  

     

      

   
    

  

 









 
























































  



    

 


   



 












Figure 2.5: The same rhythm part and one sample melody from the agent trained
with the addition of drum information.

2.6 Discussion

While none of our approaches resulted in a generative model capable of producing

melodies of the same musical richness and variety as the expert examples, these

results do provide several interesting avenues for analysis. Since the generative models

from our first two experiments provided the most musical outputs, we will begin our

discussion there.

The melodies from our baseline experiment seem to follow directly from the short-

comings we identified in that choice of representation. More specifically, given that

the data representation does not provide any indication of where a particular frame

falls in the overall musical structure, notes occur more frequently and haphazardly

across the metre. The temporal information provided by the accumulated extension



17

certainly appears to have helped it generate melodies that follow a stricter sense of

musical knowledge: notes occur less frequently and better follow the emphases of the

underlying rhythm. Additionally, the model trained on the accumulated represen-

tation demonstrates a stronger understanding of expert data set. The motif in the

first measure of the example is directly taken from the expert data set, although it is

distorted slightly in time.

Interestingly, both models seemed to struggle to generalize across key signatures,

and instead rely mostly on notes that are in common between the three keys. This

problem of excessively repeated tokens is actually a well-documented shortcoming of

generative models built with recurrent neural networks, though the extreme sample

efficiency of our method in comparison with RNN-based approaches is very promising

[4].

Given the results of our experiment with a decayed representation, it appears that

the underlying distribution was too topologically complex for the generator to prop-

erly descend the gradient, instead settling into a local minimum where the best action

choice was always to choose no note. Perhaps a representational scheme that pre-

serves note history upon recurrence instead of resetting the decayed value to one

would provide better results.

In our drums experiment, it does appear that limiting our trajectories to the key

of C helped to expand the range of actions the agent is willing to take, and the drum

pattern does help to anchor the action selections to mostly occur on the emphasized

8th notes. However, the highly recurrent nature of the drum pattern seems to undo

some of the advantages of the accumulated representation, as notes are much more

frequent than when given the rhythm pattern alone.

2.7 Live Demo System

Given our prevailing goal of using this technology in the context of a live, interactive

musical agent, we designed a demo system that utilizes our model in a real-time



18

environment. Since we observed difficulties in the agent’s ability to generate rhythmic

structure, we designed a hybrid system in the vein of Castro’s ML-Jam system [7].

Here we describe the interaction flow of the system.

Sessions take place within the Ableton Live environment, with an iPython note-

book server running in the background. A user starts by recording an 8 bar rhythm

pattern in Ableton, which is simultaneously recording the MIDI to control an inter-

nal instrument and sending that MIDI over the internal MIDI drivers to the iPython

server. This server processes the incoming messages into the accumulated data rep-

resentation using a Python wrapper for the RtMidi library. Once the 8 bar rhythm

part has finished recording, we use our pretrained Melodic Imitator to provide note

actions for each data frame. The user then enters into the improvisational phase of

the interaction. In this phase, Ableton no longer directly records the keyboard input.

Instead, RtMIDI continues listening for any note on and note off messages and uses

the Mido library to route MIDI messages replaced with the note values decided on by

Melodic Imitator back to Ableton on a different MIDI channel to control a different

instrument. This two phase process is represented in Figure 2.6

Figure 2.6: The two phase interaction flow for the live demo.



CHAPTER 3: CONCLUSION

In this section, we summarize the main conclusions of our work and look forward

to future possible developments in this area.

3.1 Summary of Main Results

In this paper, we presented Melodic Imitator, a generative music system designed

around the generative adversarial imitation learning algorithm. We explored the im-

pacts of various data representations and of providing additional musical information

on the quality of melodies generated. These results are encouraging for the potential

of further explorations on the applicability of inverse reinforcement learning to musi-

cal domains. We also described an interactive musical agent built with our models,

showing the possibility of the use of these approaches in real-time environments.

3.2 Limitations

While the results from Melodic Imitator are promising in some regards, and we

were able to achieve our goal of building a interactive musical agent based solely

on the style of a particular performer, there is clearly still work to do before this

approach would result in a system that musicians would find useful in their creative

processes. Melodic Imitator is currently limited in its ability to achieve high levels

of musical variety, especially in terms of its potential to perform across differing key

signatures. The system is also restrained in its flexibility to adapt across musical

environments; in it’s current iteration, it can only operate in the context of a simple

harmonic accompaniment with an accompanying drum rhythm. Finally, our hybrid

approach does not quite achieve the level of a true improvisational music companion

given that it still necessitates performer intervention to provide the rhythmic content



20

of the generated melody.

3.3 Future Work

Perhaps the most promising avenue for future work would be integrating the GAIL

algorithm with RNN policy networks for melody generation. Additionally, data rep-

resentation is clearly incredibly consequential in the design of this type of system,

and we believe that we have not yet found the ideal representation that best captures

available musical information. Finally, in terms of system design, an agent such as

Melodic Imitator would be most useful when it is maximally adaptable to any given

musical environment. For example, combining the agent with audio processing meth-

ods could extend its use beyond MIDI, or enabling the agent to adapt to additional

musical elements on the fly could best utilize all available information to generate

better results.



21

REFERENCES

[1] L. Hiller and L. Isaacson, “Iliad suite score,” 1957.

[2] G. A. Wiggins, P. Tyack, C. Scharff, and M. Rohrmeier, “The evolutionary roots
of creativity: mechanisms and motivations,” Philosophical Transactions of the
Royal Society B, vol. 370, 2015.

[3] J. D. Fernandez and F. Vico, “Ai methods in algorithmic composition: A compre-
hensive survey,” Journal of Artificial Intelligence Research, vol. 48, pp. 513–582,
2013.

[4] N. Jaques, S. Gu, R. E. Turner, and D. Eck, “Generating music by fine-tuning
recurrent neural networks with reinforcement learning,” in Deep Reinforcement
Learning Workshop, NIPS, 2016.

[5] C.-Z. A. Huang, T. Cooijmans, A. Roberts, A. Courville, and D. Eck, “Counter-
point by convolution,” in International Society for Music Information Retrieval
(ISMIR), 2017.

[6] N. Collins and J. d’Escrivan, The Cambridge Companion to Electronic Music.
Cambridge University Press, 2007.

[7] P. S. Castro, “Performing structured improvisations with pre-trained deep learn-
ing models,” CoRR, vol. abs/1904.13285, 2019.

[8] B. Thom, “Interactive improvisational music companionship: A user-modeling
approach,” User Modeling and User-Adapted Interaction, vol. 13, pp. 133–177,
Feb. 2003.

[9] R. Sutton, Reinforcement Learning. The Springer International Series in Engi-
neering and Computer Science, Springer US, 1992.

[10] N. Collins, “Reinforcement learning for live musical agents,” in ICMC, 2008.

[11] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement learning,” in
Proceedings of the Seventeenth International Conference on Machine Learning,
ICML ’00, (San Francisco, CA, USA), pp. 663–670, Morgan Kaufmann Publish-
ers Inc., 2000.

[12] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maximum entropy inverse
reinforcement learning,” in Proc. AAAI, pp. 1433–1438, 2008.

[13] J. Ho and S. Ermon, “Generative adversarial imitation learning,” CoRR,
vol. abs/1606.03476, 2016.


	LIST OF FIGURES
	INTRODUCTION
	Motivation
	Interactive Musical Agents

	Literature Review
	Generative Music
	Interactive Musical Agents
	Reinforcement Learning
	Generative Adversarial Imitation Learning

	Expected Contributions

	MELODIC IMITATOR
	Agent Construction
	Data
	Environment
	Experiments
	Data Representation
	Additional Musical Information

	Results
	Discussion
	Live Demo System

	CONCLUSION
	Summary of Main Results
	Limitations
	Future Work

	REFERENCES

