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Abstract

Motivated by the widespread adoption of deep learning
techniques across a variety of industries, we explore the po-
tential for convolutional neural networks operating on vi-
sual features to assist in the valuation of real estate prop-
erties. After a brief review of existing approaches to this
problem, we propose a network architecture capable of uti-
lizing multimodal features to predict the price of a house
based on images and textual descriptors of the property. In
preprocessing our data, we generated tiled images combin-
ing external views of a home with photos of a sample bed-
room, bathroom, and kitchen from the property. To quan-
tify the potential gains in fusing this modality with the typ-
ical descriptors of real estate, such as the number of bed-
rooms and bathrooms, we experimented with simple mod-
els operating solely on the visual or textual features as a
baseline. Observing that neither was sufficient in isola-
tion, we built a multimodal network on top of a pretrained
GoogLeNet architecture, and after a wide hyperparameter
search, achieved a mean average error in price prediction
across our test set of $1635.45. To better understand the
performance of our final model, we also performed a brief
ablation study and generated saliency maps for several dat-
apoints. It is our hope that our explorations of the price
estimation problem in particular can garner insights to bet-
ter understand other questions in the industry.

1. Introduction
Real estate valuation is a costly and time-consuming pro-

cess that typically requires a domain expert, an appraiser, to
physically visit a particular property in order to make their
assessment of its value. However, real estate prices are valu-
able data for many stakeholders in a given community, and
creating a low-cost alternative to the usual process for ap-
praisal has the ability to provide substantial benefits across
the board for these various groups. For homeowners, real
estate valuations can deliver insight into the appreciation,
or depreciation, of what is, for many, their largest asset.
Urban planners and local governments could use the data

across communities to target services and bolster struggling
neighborhoods. Real estate agencies and investors could
also benefit by using pricing data to guide investment and
development. Additionally, agencies can benefit from bet-
ter understanding which features of a house strongly influ-
ence property price. Motivated by the myriad impacts that
can result from an alternative valuation process, we are in-
terested in exploring the potential for convolutional neural
networks (CNNs) to craft visual features based on images
of properties to estimate their prices. We believe that using
CNNs to automatically generate features from images can
work in tandem with textual information about a property
(such as number of bedrooms and bathrooms) to ultimately
provide an assessment of property value.

1.1. Problem Statement

The task of generating real estate valuations is funda-
mentally a regression problem. That is, we want to take
as input a set of features describing a particular property
and apply some continuous function to it that will return
a real-valued, nonnegative estimate of the property’s value,
ranging from the tens of thousands up to multiple millions
of dollars. The particular formation of the problem under
study takes as input a combination of visual and textual fea-
tures, where the visual features consist of a set of images de-
picting various internal and external parts of a property and
the textual features include fundamental descriptors of the
home, including the number of bedrooms and bathrooms
and the area in which it is located. It is our belief that a neu-
ral model will perform the best as the continuous function
approximator mentioned above. Particularly, we will con-
struct a model that uses convolutional layers to extract fea-
tures from our images and combine the generated features
with a representation of our textual data before passing it
through a series of fully-connected layers that will generate
the final valuation estimate.

1



2. Related Work
2.1. Textual Networks for Price Estimation

The topic of real estate price estimation is a relatively
popular one in the literature, but many approaches focus
only on textual descriptors of properties, often in combina-
tion with general economic measures. Both Sun [13] and
Li & Chu [10] explored the applicability of neural mod-
els to the problem of valuation, using economic descrip-
tors of a property and its local area as inputs to their mod-
els. Sun designed a simple feed-forward neural network for
the task and utilized a genetic algorithm to iteratively com-
pute the optimal initialization for the network, while Li &
Chu attempted to compare the performance of a standard
feed-forward network with a radial basis function network,
but found no conclusive results favoring one over the other.
Similar studies at predicting price based on textual descrip-
tors have attempted to find the best set of input features or
the best type of model for the task [1] [11]. In contrast
to these approaches, we believe that visual descriptors of a
property are a critical component in estimating its price and
must be considered in tandem with textual and economic
features to produce accurate results.

2.2. Neural Networks for Investment Strategy

Given that one potential application for a price-
estimation model is in guiding real estate investment, we
also explored related work in applying deep networks to
investment strategy. Heidari & Rafatirad [4] used a trans-
fer learning approach to fine tune a bidirectional attention
model aimed at the task of rent prediction. This data could
then be leveraged to compare mortgage prices against rent
potential to guide home buyers towards safer investments.
While our model does not explicitly identify potential in-
vestment opportunities, a well-trained price estimator could
be used to identify properties that are over- or under-valued
on the market, but we consider that a side effect of solving
the problem at hand and not a core motivation guiding our
research.

2.3. Valuation from Visual Features

Several previous projects have explored the ability of vi-
sual data to provide a meaningful signal for real estate val-
uation purposes. Poursaeed et al. attempted to use crowd-
sourced labels reflecting the level of luxury depicted in im-
ages from various room types to train a convolutional net-
work to approximate the perceived luxury of a property as
an additional datapoint for neural network-based valuation
[12]. This essentially reduced the problem of training the
CNN to a multi-class classification problem before concate-
nating the resulting luxury level with other relevant meta-
data for regression. Law et al. augmented traditional ap-
praisal metrics, like age and size, with images of both the

property itself and satellite imagery of the surrounding area
[8]. In their work, a CNN model was used to extract general
features, and as such, was trained as part of their end-to-end
architecture, rather than separately, as in [12]. The authors
explored two variations on the post-feature extraction stage
of their price-estimation architecture, as they were inter-
ested in comparing the accuracy that could be achieved by
a ”black-box” multi-layer perceptron with the interpretabil-
ity provided by a linear model, which they used to learn
proxy variables for the visual desirability of neighborhoods
that could generalize across different learning and model-
ing tasks. Ahmed & Moustafa also explored the combina-
tion of textual and visual features to estimate house prices in
several communities across California using neural models,
but their work relied on combining hand-crafted visual fea-
tures drawn from representative images of different room
types with the textual data for use with a fully-connected
model, rather than automate the feature extraction process
with CNNs [7]. Other works that have applied visual fea-
tures to the price estimation problem are more tangentially
related to our work, such as the random walk-based RNN
proposed by You et al. that uses sequential data to encode
neighborhood relations and the CNN model of Elnagar &
Thomas that aims to identify damage in property photos
[15] [3]. Based on these related works, we believe that
our development of an end-to-end fully multimodal model
is novel for this particular problem.

3. Dataset
In this work, we will use the dataset proposed by [7],

which consists of data for 535 different properties across
the State of California. The dataset represents a combina-
tion of textual and visual features for each property, with
the textual data consisting of the number of bedrooms, the
number of bathrooms, the area of the house in square feet,
and the zipcode of the property. The visual data for each
property consists of four images, one taken from in front
of the house, and one each of a bedroom, bathroom, and
kitchen. The prices for the properties represented in the data
set ranged from $22,000 to $5,858,000.

3.1. Pre-Processing

We split the dataset into a training set of size 428 and
a test set of 107, representing an 80/20 split of the origi-
nal dataset, and further reserved 15% of our training set for
validation purposes. To preprocess our data, we began by
naming each column and dropping all NA/NAN values, as
we believed that was the best way to handle the NA val-
ues (approximating would not have been beneficial in our
use case). We then encoded the zipcode as a one-hot vector
over the zipcodes present in the dataset, split features and
labels from the data, and used a MinMax scaler to trans-
form our values into the range [0,1]. Before the final scal-
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Figure 1. Sample tiled and normalized image from our dataset.

ing of our property prices, we also log-scaled all the price
labels to better handle the wide range of prices observed in
our dataset. For the images, we created a collage of the 4
images per property, each sized at 112 x 112, to have a fi-
nal output image of 224 x 224. We then divide our images
by 255 as commonly done in Computer Vision literature, to
describe the 0-255 RGB pixel range within a 0.0-1.0 range.
A sample of one of our tiled, normalized images is given in
Figure 1. For our multimodal network, we further normal-
ized our images using the statistics from the dataset used
to pre-train the GoogLeNet model to ensure it could extract
the proper features. Note that our preprocessing was loosely
based off of the work done in the repository from [7], as we
believed this was an efficient means of going about cleaning
and preprocessing our dataset.

4. Method
4.1. Transfer Learning

Our ultimate aim in this project is designing a model ar-
chitecture that can operate over both modalities of data that
we believe are relevant to solving the valuation problem:
textual and visual. However, the constrained size of our
dataset presents a challenge, particularly in regards to train-
ing the convolutional portion of the network. State-of-the-
art convolutional neural networks are often very deep, with
dozens of network layers and millions of trainable weights,
and an attempt to train such a model on our compact dataset
would be far more likely to result in extreme overfitting
rather than recovering any semantically meaningful inter-
pretation of the data. Our data-poor training regime thus
necessitates transfer learning. Transfer learning is a process
by which a model that has been pre-trained for a particular
task, oftentimes the ImageNet object recognition challenge

[2], is re-purposed for a new learning objective. Transfer
learning is a common practice across computer vision re-
search due to the computational expense of training a deep
CNN model from scratch and is generally a tractable ap-
proach given the generalizability of the features learned in
early layers of such models (like filters identifying lines and
edges). There are two main approaches to transfer learning:
fine-tuning an entire model for the new task, or freezing the
weights in the model for use as a fixed feature extractor.
Given our dataset size, we believed that backpropagating
through the entire network was more likely to hamper our
model’s performance rather than provide any gain in accu-
racy, so we opted for the later approach. Next, we will de-
scribe the model chosen for this transfer task: GoogLeNet.

4.2. GoogLeNet

GoogLeNet, the winner of the 2014 ImageNet challenge,
represents two main advances over the types of CNN mod-
els that came before it: it went deeper with its convolutional
layers, allowing it to learn better hierarchical features, and it
did away with the fully-connected layers that contained the
majority of parameters in earlier models, enabling a greater
level of computational efficiency [14]. Both of these fea-
tures make GoogLeNet an ideal choice for our task, with
the strong hierarchical features enabling better generaliza-
tion to our problem setting and the computational efficiency
allowing for rapid prototyping and iteration. The ability of
GoogLeNet to go deeper than previous convolutional net-
works was facilitated by the development of a strong local
network topology that could be stacked repeatedly, the In-
ception module. The Inception module was motivated by
the fact that relevant features in an image often occupy re-
ceptive areas of differing sizes, so rather than define a sin-
gle, fixed-size convolution at a given layer in the network,
the Inception module computes convolutions of various fil-
ter sizes in parallel and then concatenates the output along
the channel dimension. However, these parallel computa-
tions are expensive to compute, and stacking this opera-
tion would result in ever-expanding channel dimensions, so
the Inception module also includes 1x1 ”bottleneck” layers
which preserve the spatial dimensions of the data while re-
ducing the channel dimension. Other novel features of the
GoogLeNet architecture are the average pooling layer at the
end of the Inception layers that transforms a (H x W x C) in-
put to a length-C vector for classification (enabling variable-
sized input) and the auxiliary classification networks at var-
ious depths to promote gradient flow through the network.

4.3. Architecture

Our core idea is to take a pre-trained GoogLeNet model
with a newly initialized fully-connected layer and concate-
nate its output to the textual descriptors of a property as a
complete representation for regression purposes. The net-
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Figure 2. Our full architecture, with GoogLeNet - in red - serving as a fixed feature extractor over our visual input. GoogLeNet figure taken
from CS231N course notes [9].

work that we have built on top of this concatenated feature
consists of a dense layer followed by a ReLU activation and
dropout, a second dense layer followed by a ReLU, and an
output layer with a single output representing the final pre-
dicted price. To train the model, we only backpropagate
our error - the mean absolute error between predicted and
true price - through the fully-connected network and the fi-
nal layer of the GoogLeNet model, retaining the weights in
the convolutional layers. We believe this approach will be
able to extract rich features from our visual data to improve
the predicted prices over a textual-only approach. Our full
architecture is displayed in Figure 2.

4.4. Baselines

Given that we are interested in exploring the potential
gains in price prediction accuracy when augmenting textual
descriptors of real estate with images of the property, a natu-
ral point of comparison is the price prediction accuracy that
can be achieved using only textual data. As a baseline, we
implemented a simple fully-connected neural model using
Keras that takes as input our processed textual features and
returns a price estimate. The model consists of three fully-
connected layers, with hidden dimensions of size 64 and 32
and an output dimension of 1. We used ReLU activations
between our hidden layers and followed the training regime
described in section 5.5.

To explore the level of information about a property en-
coded in its visual depictions, we decided that another valu-

able point of comparison would be a simple convolutional
network with exclusively visual features. Our model con-
sists of three convolutional layers with filter sizes of 3x3
and total filter counts of 16, 64, and 128, respectively. We
perform batch normalization and max pooling with a filter
size of 2x2 after each convolutional layer. The output of the
final max pool operation is flattened and passed through a
series of fully-connected layers with ReLU activations, hid-
den dimensions of 8 and 4, and a final output of size 1.

4.5. Learning Algorithm

We trained all of our models using the same training pro-
cedure, which we will describe in this section. We used
batch gradient descent as our optimization method, in which
a loss value is calculated over a training batch and then
backpropagated through the network to find the contribu-
tion of each trainable parameter to the calculated loss. The
loss function we used to measure the error from our pre-
dicted outputs was mean absolute error (MAE) loss, as this
was the common loss function we observed prediction mod-
els using in this problem space [10]. For a training batch of
size N , the MAE loss takes the form:

MAE =
1

N

N∑
1

|yi − y∗i |

where yi is our predicted value and y∗i is the ground truth.
We then backpropagate this value to find the gradients with
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respect to each of our parameters, and use Adam optimiza-
tion to take a step in the negative direction of our gradient
to (hopefully) reduce the loss over the next training batch.
Adam is a per-parameter adaptive learning rate method that
calculates a bias-corrected running average of the first and
second moments of the gradientmt and vt and then updates
the parameters w of our model using the formula:

wt+1 = wt − η
mt√
vt + ε

where η is our learning rate, a tunable hyperparameter
[6]. We trained all of our models for 25 epochs (complete
passes through the training data).

5. Experiments
We will now describe our experiments with our baseline

and multimodal models. Our training and evaluation code
was adapted from the CS231N course assignments [9].

5.1. Saliency Map Visualization

Seeking to better understand the types of features the
pretrained GoogLeNet model was attuned to detecting, we
were interested in developing saliency maps for some of
our images. Saliency maps are representations of the pix-
els in a given image that most influence the output of a
convolutional model. However, because we were using the
pretrained model as a fixed feature extractor in our mul-
timodal architecture and thus had to disable gradient flow
through that portion of the network as a result, we were
not able to generate saliency maps on our final model. Be-
cause the weights in the convolution layers were frozen,
though, it seemed to be a reasonable approach to generate
saliency maps using only the pretrained GoogLeNet model,
as it could still provide insight into the features that were
identified throughout the Inception module layers. Further-
more, to better characterize the contributions of the individ-
ual room types in our tiled images, we generated saliency
maps for component images to disentangle the activations
across the collage. The process of generating a saliency
map involves backpropagating the gradient of the model’s
output back onto the original input image. By taking the
absolute value of those gradients, we are able to observe the
pixels that have the greatest effect on the model’s output.
Note that we used the implementation from [5] to gener-
ate our saliency maps. In generating our saliency maps, we
observed that the model was able to identify ”important” re-
gions of the image quite well, which is likely a side effect
of the broad categories of objects that comprise the original
ImageNet dataset. Figures 3 and 4 display two sets of orig-
inal images and their corresponding saliency maps. Notice
the saliency map corresponding to the image of the kitchen
in Figure 3 finds most of the image important (the table,
the oven, and the cabinets), but not the distant room on the

Figure 3. Image of kitchen and corresponding saliency map.

top right of the image. This makes sense as an effect of the
”restaurant” category in the original dataset, meaning that
our model is primed to extract features representing relevant
portions of our kitchen images. Notice also that the saliency
map corresponding to the image of the bathroom in Figure
4 finds the counter top important. This is valuable behav-
ior for our final valuation model, as features such as the
bathroom countertop will likely have a greater influence on
the price of the property over the bathroom floor or shower
curtains. Taken holistically, our saliency maps confirm the
applicability of transfer learning from an ImageNet-trained
GoogLeNet model to our price estimation task.

5.2. Hyperparameter Search

In order to discover the strongest possible model that
could be constructed with the architecture described in sec-
tion 5.3, we performed a broad search over the set of hy-
perparameters we believed to be most impactful to the per-
formance of our multimodal model. The hyperparameters
and their corresponding domains are as follows: size of fea-
ture output from GoogLeNet (16, 64, 256), hidden units
in the first dense layer (32, 128, 512), hidden units in the
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Figure 4. Image of bathroom countertop and corresponding
saliency map.

second dense layer (16, 64, 256), dropout probability (0,
0.25, 0.5, 0.75), batch size (2, 4, 8, 16), and learning rate
(0.0001, 0.001, 0.01, 0.1). We trained models with each of
the 1,728 possible configurations of these hyperparameters
for 25 epochs, and selected the best configuration based on
the final validation error. The best configuration of hyperpa-
rameters was 16 visual features, 128 hidden units in dense
layer 1, 16 units in dense layer 2, a dropout probability of
0.75, a batch size of 2, and a learning rate of 0.001.

5.3. Ablation Study

After training our final multimodal model with the hy-
perparameters discovered via the search process described
above, we wanted to better quantify the impact of each of
the modalities on the final price estimation error. We for-
mulated this question as an ablation study: if we disable the
part of the network corresponding to either vision or text,
how is the final estimation impacted? We implemented this
ablation study as a modification of our test accuracy func-
tionality. We provided additional boolean flags to the func-
tion that would disable either the visual input or convolu-

Method Mean Absolute Error
Baseline Text Model $595,545.15
Baseline Visual Model $595,543.84
Multimodal Model $1635.45
Multimodal Model (Text-Only) $3515.97
Multimodal Model (Vision-Only) $1481.64

Table 1. Results from our experiments, given as the mean absolute
error in price prediction on our test set.

tional features by replacing them with a identically-sized
zero vector before concatenation. This has the effect of
disabling all the related neurons throughout the rest of the
network and should provide insight into the contribution of
each modality to the final price estimation. The outcomes
of this study are included in our table of results.

5.4. Results

The results from the experiments with our baseline tex-
tual and visual models, multimodal model, and ablation
study are given in the form of the average price prediction
error on our test set in Table 1.

5.5. Discussion

Our results demonstrate a remarkable performance gain
when fusing the two modalities in our dataset. Clearly the
features that we analyzed via our saliency maps were a pow-
erful asset when applied to the valuation problem. Based on
the similar performance metrics seen across the two base-
line models, we hypothesize that learning this task from
scratch with such a small dataset is not a tractable problem,
leaving both models in similar local optima and justifying
our application of transfer learning to price estimation.

One discovery we made when training our models was
the importance of early stopping. We originally trained all
our models with 100 epochs, but realized that was far too
many passes through a dataset as small as ours, and led
our networks to bad local optima. For example, after 100
epochs, our multimodal model would output a constant re-
sult regardless of input. By reducing our training epochs to
25, we were able to avoid overfitting on our training set and
retained diverse outputs across our test set.

Our ablation study results are interesting, but ultimately
inconclusive due to the small size of our dataset. The re-
sults do seem to support the hypothesis we formed based
on our baseline results that the problem is a difficult one to
learn from scratch with our dataset, with the text-only net-
work showing highly degraded performance. It is difficult
to make a strong conclusion about the vision-only ablation
study. Given that it showed marginally increased perfor-
mance over the multimodal model, it could be an indication
that the GoogLeNet features are doing much of the heavy
lifting, but it could also simply be an artifact of a particular
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test/train split over a small dataset. A more useful conclu-
sion can be drawn when comparing the vision-only ablation
study with the text-only study and seems to support our be-
lief that the visual features of a real estate property are one
of the key signals when appraising its value.

6. Conclusion and Future Work

Ultimately, the proposed multimodal model yielded bet-
ter performance than our baseline text and visual models,
as well as our text only multimodal model. It did not per-
form as well as our multimodal model with only visual data
passed into it. We cannot extrapolate as strong of a conclu-
sion as we might have hoped given the size of our dataset,
however the multimodal approach seems to be a promising
direction for this problem space. The most valuable poten-
tial avenue for the future of this work would be the con-
struction of a larger dataset, which could greatly reduce the
stochasticity in the training of our networks, allowing us to
draw stronger, more general conclusions. A larger dataset
would also enable the training of a deep convolutional net-
work from scratch, which would allow the model to learn
features more specific to this task, and enable us to generate
saliency maps over the multimodal model to better under-
stand features of a house that strongly correlate with prop-
erty price. These observations could perhaps lead to under-
standing deeper questions in the industry, such as whether
a property is under distress to sell. Clearly, the potential
impacts of this work encourage future explorations of this
problem space, which would be greatly enabled by a more
data-rich regime.

7. Contributions

In pursuit of this final report the contributions of each
author are as follows:

Sam Lowe: Multimodal model design, hyperparameter
search, ablation study, paper writing

Svetak Sundhar: Baseline model design, data pre-
processing, saliency maps, paper writing.

We sincerely thank Fei-Fei Li, Ranjay Krishna, Danfei
Xu, and all the CS231N course staff for exposing us to many
of these ideas and for a great quarter!
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