
Lightening the Load: DeLighT Blocks for Faster QA
Training and Ensembling

Stanford CS224N Default Project

Sam Lowe
Department of Computer Science

Stanford University
samlowe@stanford.edu

Abstract

Transformer models have proven to be one of the most dominant paradigms for
NLP in recent years across a wide variety of problem domains. However, these
networks tend to be extremely memory- and computationally-demanding models
to train, leaving the door open to more efficient alternatives to standard transformer
architectures. In this work, we explore the applicability of one such lightweight
transformer alternative - the DeLighT block - to the task of SQuAD 2.0 question
answering. The core architectural innovation of the DeLighT block is in its name-
sake DeLighT transform, the first component in the block, which is a series of
group-linear, expand-reduce layers, with special input mixing and feature shuffling
connections to allow for strong signal flow and long-term dependency learning.
The remainder of the block architecture is similar to standard Transformer blocks,
with self-attention and modeling layers, but with the flexibility to operate over
compressed representations due to the shift in representational power towards the
DeLighT transform. In our experiments, we replace the Transformer-style RNN
Encoder blocks in a standard QANet model with DeLighT blocks. This substitution
provides two main advantages - greater flexibility over per-block parameter counts
and parallelization during training time - which results in cheaper training costs in
regards to both memory and compute time. We experiment with several different
model configurations of varying architectures, attention styles, and training regimes
to discover a lightweight model to use as the basis for an ensemble method, in
which we further experiment with a variety of DeLighT configurations before
summing over their normalized predictions to determine the final answer. Our
ensemble method achieves modest performance, but we demonstrate the promise
of the approach by achieving near performance parity with the baseline model with
one of our models at comparative parameters counts, supporting the promise of the
DeLighT approach with further investigation into the correct configuration.

1 Key Information to include

• Mentor: Allan Zhou
• External Collaborators: None
• Sharing project: No

2 Introduction

Natural language processing is an exceedingly broad area of research that covers a wide range of
end-user tasks - machine translation, summarization, and sentiment analysis are just one small sample.
One of the core skills needed by systems to tackle any number of these tasks is that of reading
comprehension: the ability to understand the information contained in a text, remember it in some

Stanford CS224N Natural Language Processing with Deep Learning



way, and then reason with it for some downstream function. The need to imbue our models with
these abilities and to measure their performance on the comprehension subproblem motivates the
task of question answering as a valuable area of research. In a question answering task, a system is
typically presented with some piece of text to serve as the context for a question that the system is
then expected to answer, based on the information it has been given. In this work, we utilize SQuAD
2.0 question answering as our problem setting [1]. For the SQuAD 2.0 dataset, the answers all take
the form of spans from the text, that is, the answer is a continuous stretch of text embedded directly
in the context. However, the new 2.0 version of SQuAD represents a more challenging problem, as
roughly half of the questions are unanswerable (no span in the context answers the query), requiring
systems to reason both deeply and confidently about the text.

Since the introduction of the architecture in the seminal paper "Attention is All You Need", Trans-
former models have been used to achieve state-of-the-art performance on almost as many tasks
as there are problem areas in NLP [2]. In fact, the language models responsible for many of the
flashiest headlines and most impressive performances in recent years have mainly been powered by
Transformer architectures, with GPT-3 being one prominent example [3]. However, as exemplified
by GPT-3, this increase in performance has come at a significant cost in terms of compute power and
training time, with the GPT-3 model containing on the order of 175 billion parameters. This size
of model places the current state-of-the-art in NLP far outside the reach of hobbyists or even many
researchers, motivating the necessity of discovering smaller models, capable of competitive perfor-
mance when compared to more fully-parameterized networks, in order to promote the democratization
of NLP research.

In this work, we explore the applicability of one particular lightweight Transformer alternative,
the DeLighT block, to deliver smaller model sizes that still perform effectively on the SQuAD
2.0 benchmark. Although unable to exceed the baseline performance, we did uncover one model
configuration that results in performance parity with the baseline at comparative parameter counts,
and the drastically reduced training times proved to be a boon in the promotion of research efforts.

3 Related Work

3.1 Making NLP Models Lighter: DeLighT and DeFINE

Over the past few years, Mehta and his research collaborators have studied a variety of approaches to
making models for natural language processing more lightweight and efficient. In their first paper
from 2020, they present the DeFINE operation, a deep, factorized input token embedding approach for
sequence models [4]. In seeking to reduce the parameter density in the lowest layers of the network
(which represent a large percentage of the total parameter count for models with large vocabularies),
they introduced an approach to input embedding based on group linear transforms called a hierarchical
group transformation (HGT). The DeFINE architecture contains many ideas embodied in their later
work on transformers, including the use of expand-reduce layers to enable downstream compression,
group linear operations, and the use of input mixing connections to maximize information flow.
However, the DeFINE architecture addresses a fundamentally different problem from the one under
study here: transformer substitutes that address the compute bottleneck represented by their large
parameter counts and, when RNN-based, their linear sequence dependencies.

In their follow-up paper "Deep and Lightweight Transformers", Mehta et al. tackled the problem of
efficient transformer architectures directly by introducing a new block architecture called DeLighT
based on their previous work with DeFINE [5]. The core component of the architecture is an
expand-reduce operation in the style of DeFINE called the DeLighT transformation. In comparison
to the DeFINE operator, DeLighT similarly utilizes group linear transformations with input mixing
connections, but uses a sequence of group counts that increase over the expand layers and then
decrease back to a singular group during the reduce phase, rather than in hierarchical (decreasing)
order. Additionally, the DeLighT architecture uses feature shuffling before the input mixing layer in
order to promote the discovery of long-range dependencies. The representational power afforded by
DeLighT allows for further efficiency gains in the rest of the architecture, as the output of DeLighT
can be compressed before being passed to a self-attention layer and the final modeling layers can
be replaced by a reduce-expand pair. One of the core innovations of the DeLighT architecture that
enables its lightweight functionality is the increased flexibility it offers when compared to standard
transformers, as the layer counts and sizes in the DeLighT transformation can be independently

2



DeLighT Block

DeLighT Block

DeLighT Block

DeLighT Block DeLighT Block

(a) DeLiQA, a QANet model with DeLighT blocks in
place of RNNEncoders. Original figure from [6].

GLT (Groups 
= 2)

Feature 
Shuffling

Input Mixer

(b) Sample layer of DeLighT transformation.

Figure 1: Key Components of Our Approach: DeLiQA and DeLighT

adjusted, allowing for the construction of wide and deep networks when desired. The authors then
explore the efficacy of their approach by demonstrating competitive performance at 50% parameter
counts when compared to the state-of-the-art on a variety of task, and parity or better when expanding
the DeLighT blocks to equivalent parameter counts. Despite this analysis, they did not study the
performance of the DeLighT architecture in the context of modular, complex models like those used
for question answering, a novel contribution of this work.

3.2 Transformers for Question Answering: QANet

As mentioned in the introduction, transformer architectures have made their way into almost every
research area in NLP, and question answering is no exception. However, due to the particularities of
the QA problem (like the need to deal with the question and answer in both isolation and combination),
question answering systems tend to be highly complex and modular, with particular modules dedicated
to specific tasks, so the approach to applying transformers to the problem is necessarily also a modular
one, as is the case for the main transformer-based question answering architecture studied in this
work: QANet [6]. Compared to a more general, transformer-based language model like GPT-3, which
consists of a singular architecture component repeated 96 times, QANet only utilizes transformers
in a limited capacity. Specifically, QANet contains transformer-style RNNEncoder blocks in the
encoder layer directly before the context-to-query attention layers and in the modeling layers directly
after. This architecture previously achieved state-of-the-art on the original SQuAD benchmark, and
due to its performance, its use of transformers for question answering, and the need to address
the peculiarities of question answering in this work, QANet will form the basis for my DeLighT
substitution.

4 Approach

4.1 Baseline

Since we are working on the IID SQuAD default project track, the baseline was provided with
the starter code, and is essentially a Bi-Directional Attention Flow model without the character
embedding layer. We refer you to the original BiDAF paper for further details [7].

3



4.2 DeLiQA

We have elected to give the main approach for this work the name DeLiQA to represent its lineage as
a combination of the QANet and DeLighT methods. The architecture is depicted in Figure 1(b) and
is a simple alteration of the core QANet model that replaces the transformer encoders with DeLighT
blocks (described in detail in the following section). More specifically, the architecture consists of
an embedding layer followed by a DeLighT block that operate on the context and query inputs in
isolation. The output of the first DeLighT layers is then passed to a cross-attention layer that allows
the context to attend to the query and vice versa. The output of the cross-attention layer is then
operated over by a series of three DeLighT blocks, though weights are shared between all three, with
the output of the first two being concatenated and passed to a linear layer followed by softmax to
estimate the start of the span, and the output of the latter two similarly concatenated and transformed
to generate end probabilities. Given the time constraints of the project and the focus on the DeLighT
block component in particular, we utilized a pre-existing implementation of QANet to bootstrap our
experiments, credit to https://github.com/PanXiebit/QANet-pytorch/.

4.3 DeLighT Block

We will now more fully specify the DeLighT block, and its core DeLighT transformation, that we
gave a brief overview of prior. Formally, a DeLighT transformation is specified by five parameters:
the number of layers N , the maximum width multiplier wm, the input dimension dm, the output
dimension do, and the maximum number of groups gmax. Over the first

⌈
N
2

⌉
layers, the input is

expanded up to a maximum dimension of wmdm, and then reduced to do-dimensional output over the
remaining

⌊
N
2

⌋
layers. At a given layer, the GLT operation splits the input into a number of groups,

each of which is transformed with its own independent weights and biases and concatenated to form
the layer output. The number of groups at a given layer increases by a factor of two over each of
the first

⌈
N
2

⌉
layers (capped at gmax) and then proceeds in reverse back to a singular group at the

output. Additionally, for each layer after the first, the original input is split into the correct number
of groups and spliced into a shuffled version of the previous layer’s output groups. By combining
feature shuffling with local weight matrices, the DeLighT transform is able to model both long- and
short- term dependencies. The function of a DeLighT transform layer can be compactly specified as:

Yl =

{
F(X,Wl,b, gl), l = 1

F(H(X,Yl−1),Wl,b, gl), otherwise

where F is the group linear transform and H is the feature-shuffling, input-mixing operation. A
sample layer of this operation is depicted in Figure 1(a).

In the full DeLighT block, this transformation is followed by a causal self-attention layer, a feedfor-
ward layer to recover the original input size dm to enable a residual connection, a reduce-expand
modeling layer pair, and finally a dropout layer and final residual addition. As the DeLighT block
represents the main object of study in this work, it was coded entirely from scratch.

4.4 Ensembling

Once we established a DeLiQA architecture capable of learning (not just guessing no answer for
all questions), we experimented with a variety of hyperparameter settings for the architecture in
general and DeLighT block in particular. In order to maximize performance with these lighter-weight
models, we performed ensembling experiments over a varying number of trained DeLiQA models.
Our ensembling technique was quite simple - we simply added the normalized softmax probabilities
(to remove the possibility of a single model learning higher weights and thus dominating) and
re-normalized for the final prediction.

5 Experiments

5.1 Data

The dataset for the project is provided by the SQuAD 2.0 benchmark, and consists of 129,941 training
samples, 6078 dev samples, and 5915 test samples [1]. As mentioned previously, each sample consists

4



of a question, a context paragraph, and answer (span) from the paragraph (if there is one). The goal
for the model is then to predict the correct start and end token for the answer.

5.2 Evaluation method

The evaluation metrics for the SQuAD 2.0 benchmark consist of two measures: Exact Match (EM)
and F1. Exact Match is a binary measure of whether the system output exactly matches the ground
truth, while F1 is a more flexible measure that is the harmonic mean of precision and recall. The
Exact Match and F1 scores on a particular sample are defined as the maximum score achieved across
the available reference translations.

5.3 Experimental details

We performed a large number of experiments with differing architectures, training regimes, and
hyperparameter settings in order to discover a configuration that would perform satisfactorily with
the DeLighT block as its core encoding or modeling module. All models were trained for 30 epochs.

Baseline Modifications Our initial experiments consisted of a direct substitution of the DeLighT
block for the RNNEncoder blocks in the BiDAF baseline, but we found that this substitution was
unable to learn beyond the local minimum of guessing no answer. Given the difference in training
regimes for QANet and BiDAF and that the former was actually transformer-based, we next elected
to train the DeLighT-BiDAF model with a training regime more closely resembling QANet (Adam
with warm-up and a learning rate of 0.0003), but still found the model struggled to learn anything. For
both of these models, we used one DeLighT block before the cross-attention layer and two after. The
DeLighT block parameters were N = 5, dm = 128, do = 64, wm = 8, and gmax = 4. Additionally,
the attention layers were single-headed and the expand-reduce modeling layers had hidden size dm/4.

QANet Attention Experiments Once we established our QANet implementation was working, we
initially experimented with differing attention styles in our DeLighT block in the spirit of Assignment
4: causal self-attention and synthesizer attention. The DeLighT block settings were identical to the
BiDAF version besides do = 128 and an increase to 4 attention heads. From a module level, we
utilized three DeLighT blocks per modeling layer after cross attention (meaning the final output has
been transformed by 9 DeLighT blocks, though again with shared weights). The training regime was
also identical to the final BiDAF experiment (Adam with warm-up and a learning rate of 0.0003).

Varying DeLighT Block Depth + Width After observing the most promising results with causal
self-attention (a model we’ll call DeLiQA.1), our next experiments attempted to utilize the added
flexibility of the DeLighT block to discover the strongest-performing single model. Given that
we had to reduce the number of DeLighT blocks as compared to Encoder layers in the original
QANet implementation due to the multiplicative effect of the GLT layer count, so we trained two
alternatives to our first causal attention model. The first alternative (DeLiQA.2) had wider DeLighT
transformations in the modeling layers (as a factor of input size the hidden sizes for the GLT layers
were 4, 8, 8, and 4) but fewer blocks (2). In the second alternative (DeLiQA.3), the modeling
DeLighT blocks had narrower transformations (wm = 4) and single-headed attention but a wider
reduce-expand pair (dm ∗ 2 by dm/2) and more total blocks (5). Additionally, DeLiQA.3 was trained
with a learning rate of 0.001 for the first 15 epochs and 0.0003 for the final 15 due to gradient collapse
around the halfway point.

Ensembling Our final series of experiments utilized the ensembling technique outlined in Section
4.4 in an attempt to leverage what was learned across our 3 successful models, DeLiQA.1, DeLiQA.2,
and DeLiQA.3 (DeLiQA.E).

5.4 Results

5



Model Dev F1 Dev EM Test F1 Test EM
BiDAF (Baseline) 60.77 57.47 – –
BiDAF + DeLighT 53.42 48.21 – –

BiDAF + DeLighT (QANet Regime) 52.70 46.77 – –
DeLiQA (Synth Attention) 55.76 51.94 – –

DeLiQA.1 58.10 53.97 –
DeLiQA.2 56.81 52.58 – –
DeLiQA.3 56.81 53.12 – –
DeLiQA.E 56.70 52.80 53.18 49.01

Table 1: Results for the experiments described in Section 5.3.

Model Parameter Count (Millions)
BiDAF (Baseline) 2.34

DeLiQA.1 2.57
DeLiQA.2 3.13
DeLiQA.3 3.16
DeLiQA.E 8.86

Table 2: Parameter count comparisons for the DeLiQA models and QANet.

Unfortunately, our qualitative results did not meet our expectations for performance, though there
are certainly bright spots that motivate further work in the area. The primary achievement of this
research so far is DeLiQA.1, which achieves near performance-parity with the baseline at similar
parameter counts. Due to the time I spent in searching for performant configurations, I was unable
to focus as much as I would like on reducing parameter counts, though it is possible based on the
results above that I ultimately overparameterized the final iterations. I was hopeful that the ensemble
method would achieve the best performance of any approach, but it appears based on Table 1 that
the models did not learn complementary features, as performance actually degraded. In total, the
DeLighT approach appears to have promise, but the added flexibility of the various DeLighT block
parameters actually makes it more difficult to find the correct combination of hyperparameters when
experimenting.

6 Analysis

To better understand where the models performed well and where they failed, we will now look at a
selection of sample outputs from our experiments.

6.1 Model Specialization

One of the more interesting observations I made when observing sample output from the models
at training time is that some of the DeLighT models seemed to have a particular affinity for certain
types of answers. For example, DeLiQA.1 excelled at numerical answers, particularly those involving
dates, and was frequently so confident in its date-answering ability that it would predict date ranges
for unanswerable questions, which is a more complex behavior to learn than the right answer in that
context. Figure 2 contains representative samples.

6.2 Ensembling and Confidence Diffusion

While the above analysis initially led me to believe that I would find a good deal of success in
ensembling, one of the issues that ultimately resulted in the degraded performance is a phenonemon I
observed in the sample outputs I have termed "confidence diffusion". While the individual models
were capable of making compact span predictions, the behavior that resulted when summing their
normalized outputs was widened answer spans as the ensemble attempted to interpolate between the
individual model predictions, leading to answers that often contained extra words. Figure 3 contains
samples of these overly-long span predictions

6



(a) Sample incorrect date prediction from DeLiQA.1 (b) Sample correct date prediction from DeLiQA.1

Figure 2: Date predictions from DeLiQA.1

(a) Sample incorrect date prediction from DeLiQA.1 (b) Sample correct date prediction from DeLiQA.1

Figure 3: Confidence diffusion from DeLiQA.E

7 Conclusion

In this work, we studied the applicability of the DeLighT block architecture to a wide variety
of question answering contexts and training regimes. While individual model performance never
exceeded the baseline, we were able to achieve near performance-parity at a comparable parameter
count, supporting the claim that the DeLighT architecture can serve as a substitute for transformers
in modular QA systems. Additionally, we were able to perform a large number of experiments in a
relatively short window due to the gains in training speed enabled by the removal of linear sequence
dependencies for RNN-based encoders. Although our ensemble performance was modest, further
work on identifying the best configuration for single-model architectures could drastically improve
their combined metrics. At the outset of this work, I held the belief that the increased flexibilty
afforded by the granular control of the DeLighT block would be an asset in building performant
architectures, but it turned out to be the largest diversion for this project, as most of my research time
was spent on various tweaks to the DeLiQA model. One of the limitations of our current work is
the use of the DeLighT block in contexts previously purpose-built and optimized for transformers
or RNNs, meaning that research into a question answering architecture built for the DeLighT block
could lead to large jumps in performance, representing a promising avenue for future development.

References
[1] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable

questions for SQuAD. In Association for Computational Linguistics (ACL), 2018.

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[4] Sachin Mehta, Rik Koncel-Kedziorski, Mohammad Rastegari, and Hannaneh Hajishirzi. De-
fine: Deep factorized input token embeddings for neural sequence modeling. arXiv preprint
arXiv:1911.12385, 2019.

7



[5] Sachin Mehta1, Marjan Ghazvininejad, Srinivasan Iyer, Luke Zettlemoyer, and Hannaneh Ha-
jishirzi. Delight: Deep and light-weight transformer. In International Conference on Learning
Representations (ICLR), 2021.

[6] Adams Wei Yu, David Dohan, and Minh-Thang Luong. Qanet: Combining local convolution
with global self-attention for reading comprehension. In International Conference on Learning
Representations (ICLR), 2018.

[7] Minjoon Seol, Aniruddha Kembhavi, and Hananneh Hajishirzi. Bi-directional attention flow
for machine comprehension. In International Conference on Learning Representations (ICLR),
2017.

8


	Key Information to include
	Introduction
	Related Work
	Making NLP Models Lighter: DeLighT and DeFINE
	Transformers for Question Answering: QANet

	Approach
	Baseline
	DeLiQA
	DeLighT Block
	Ensembling

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Model Specialization
	Ensembling and Confidence Diffusion

	Conclusion

